
Deterministic Algorithm for 1-Median 1-Center
Two-Objective Optimization Problem

Vahid Roostapour, Iman Kiarazm, and Mansoor Davoodi

Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
{v.roostapour,i.kiarazm,mdmonfared}@iasbs.ac.ir

Abstract. k-median and k-center are two well-known problems in fa-
cility location which play an important role in operation research, man-
agement science, clustering and computational geometry. To the best
of our knowledge, although these problems have lots of applications,
they have never been studied together simultaneously as a multi objec-
tive optimization problem. Multi-objective optimization has been applied
in many fields of science where optimal decisions need to be taken in
the presence of trade-offs between two or more conflicting objectives. In
this paper we consider 1-median and 1-center two-objective optimization
problem. We prove that Ω(n logn) is a lower bound for proposed prob-
lem in one and two dimensions in Manhattan metric. Also, by using the
properties of farthest point Voronoi diagram, we present a deterministic
algorithm which output the Pareto Front and Pareto Optimal Solutions
in O(n logn) time.

Keywords: computational geometry, Pareto optimal solutions, 1-center,
1-median, multi-objective optimization

1 Introduction

When evaluating different solutions from a design space, it is often the case that
more than one criterion comes into play. For example, when choosing a route
to drive from one point to another, we may care about the time it takes, the
distance traveled and the complexity of the route (e.g. number of turns). When
designing a (wired or wireless) network, we may consider its cost, capacity and
coverage. Such problems are known as Multi-Objective Optimization Problems
(MOOP). Multi-objective optimization can be described in mathematical terms
as follows:

S = {x ∈ Rd : h(x) = 0, g(x) ≥ 0}
min [f1(x), f2(x), . . . , fN (x)]

x ∈ S,

where N > 1, fi is a scalar function for 1 ≤ i ≤ N and S is the set of constraints.
The space in which the objective vector belongs is called objective space. The

scalar concept of optimality does not apply directly in the multi-objective setting.



2 Vahid Roostapour et. al

Here the notion of Pareto optimality and dominance has to be introduced. In a
multi-objective minimization problem, a solution s1 ∈ S dominates a solution
s2 ∈ S, denoted by s1 ≺ s2, if fi(s1) ≤ fi(s2) for all i ∈ {1, . . . , N}, with
at least one strict inequality. A point s∗ is said to be a Pareto optimum or a
Pareto optimal solution for the multi-objective problem if and only if there is no
s ∈ S such that s ≺ s∗. The image of such an efficient set, ie., the image of all
the efficient solutions in the objective space are called Pareto optimal front or
Pareto curve.

One of the common approaches for such problems is evolutionary algorithms
[7]. These algorithms are iterative and converge to Pareto front. However they
need more time as the complexity of the Pareto front increases. Moreover, all of
these approaches have major problems with local optimums. On the other hand
there are some classical approaches like weighted sum and ϵ-constraint which
can apply on MOOPs. Although these approaches guarantee finding solutions
on the entire Pareto optimal set for problems having a convex Pareto front,
they are largely depend on chosen weight and ϵ vectors respectively. Moreover,
these approaches require some information from user about the solution space.
Furthermore, in most nonlinear MOOPs, a uniformly distributed set of weight
vectors wont necessarily find a uniformly distributed set of Pareto optimal so-
lutions. Also there may exist multiple minimum solutions for a specific weight
vector [8]. However we find the Pareto front of a MOOP with deterministic al-
gorithm. Here we consider two famous propounded facility location problems
[17].

k-median: In this problem the goal is to minimize summation of distances be-
tween each demand point and its nearest center. Charikar et. al proposed the first
constant time approximation algorithm which its outputs is 62

3 times the optimal
[5]. This improved upon the best previously known result of O(log p log log p),
which was obtained by refining and derandomizing a randomizedO(log n log log n)-
approximation algorithm of Bartal [4]. The currently best known approximation
ratio is 3+ϵ achieved by a local search heuristic of Arya et. al [1]. Moreover, Jain
et. al proved that the k-median problem cannot be approximated within a fac-
tor strictly less than 1 + 2/e, unless NP ⊆ DTIME[nO(log logn)] [12]. This was an
improvement over a lower bound of 1+1/e [16]. Using sampling technique Meyer-

son, et. al presented an algorithm with running time O(p(p
2

ϵ log p)2 log(pϵ log p)).
This was the first k-median algorithm with fully polynomial running time that
was independent of n, the size of the data set. It presented a solution that is,
with high probability, an O(1)-approximation, if each cluster in some optimal
solution has Ω(n·ϵp ) points [14]. Har-Peled and Kushal presented a (p, ϵ)-coreset

of size O(p2/ϵd) for k-median clustering of n points in Rd, which its size was in-
dependent of n [9]. Also, Har-Peled and Mazumdar showed that there exist small
coresets of size O(pϵ−d log n) for the problems of computing k-median cluster-
ing for points in low dimension with (1+ ϵ)-approximation. Their algorithm has
linear running time for a fixed p and ϵ [10]. Moreover, using random sampling
for k-median problem Badoiu et. al proposed a (1+ ϵ)-approximation algorithm

with 2(p/ϵ)
O(1)

dO(1)n logO(p) n expected time [3].
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k-center: In this problem the goal is to minimize the maximum distance be-
tween each demand point from its nearest center. Megiddo and Supowit proved
that k-center and k-median are NP-hard even to approximate the k-center prob-
lems sufficiently closely [13]. Hochbaum and Shmoys proposed the first constant
factor approximation algorithm which its output is 2 times the optimal. It is the
best possible algorithm unless P ̸= NP [11]. It is shown that there is an algorithm
with O(dO(d)n) time for 1-center problem [6]. In the high dimension, Badoiu and
Clarkson presented a (1 + ϵ)-approximation algorithm which find a solution in
⌈2/ϵ⌉ passes using O(nd/ϵ + (1/ϵ)5) total time and O(d/ϵ) space [2]. Also, for
problem of 1-center with outliers, Zarrabi-Zadeh and Mukhopadhyay proposed
a 2-approximation one pass streaming algorithm in high dimension which for z,
as the number of outliers, needs O(zd2) space [19]. Moreover, Zarrabi-Zadeh and
Chan presented an streaming one pass 3/2-approximation algorithm for 1-center
[18]. Badoiu et. al for 1-center problem, extracted a coreset of size O(1/ϵ2) which
its solution is (1+ϵ)-approximation set of points in Rd [3]. Also, for k-center they

presented a 2O((p log p)/ϵ2).dn time algorithm with (1+ ϵ)-approximation solution
using previous result.

1-median and 1-center are practical problems which have not been considered
as a two-objective optimization problem yet. Imagine mayor of a small city wants
to build a fire station in a way that minimizes the distance between farthest
building to the station, also since the number of fire engines is limited and each
fire engine must return to the station after a service, it has to minimizes the total
distance of station from all other buildings. As an another example, consider
power distribution network. Due to the dependency of energy leakage to wire
length, minimizing of the longest wire in the network would be regarded as an
essential factor. Also, any decrement in total wire length of network considered
as a second objective. The first objective is 1-median, M(u), the summation of
distances of demand points from center u and the second objective is 1-center,
C(u), the farthest input point from center p. It can be described in mathematical
terms as follow:

Definition 1. 1-median 1-center two-objective optimization problem:
Let P = {p1, . . . pn} be a set of demand points in Rd. Consider functions M(u) =∑n

i=1 D(u, pi) and C(u) = max1≤i≤n D(u, pi) are the values of point u ∈ Rd as
a center for 1-median and 1-center objectives respectively for a certain distance
function D. The goal is finding u∗ to minimize the objectives.

We study this problem in one and two dimensions in Manhattan metric. We
assume no input points have the same x or y coordinate.

This is a convex combinatorial multi-objective optimization problem which
has been studied with a different approach called ϵ-Pareto. In [15] it is shown
that this approximate Pareto curve can be constructed in time polynomial in
the size of the instance and 1/ϵ, but here we propose a deterministic algorithm
for computing the exact Pareto curve because of specifying the problem.

This paper starts with considering 1-median and 1-center as two-objective of
MOOP in one dimension. We will find the optimal of objectives and in terms of
placement of optimums we will also find the Pareto set in time O(n) (Lemma 1).
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(a) n is odd. (b) n is even.

Fig. 1: 1-Median optimal.

We continue with a proof for convexity of Pareto set. At the end of second section
we give an algorithm to compute Pareto optimal front of 1-median 1-center
two-objective optimization problem and prove the optimality of the algorithm.
In section three the same problem considered in two dimensional space. First
we find optimums of 1-median objective. After that by using the properties of
farthest point Voronoi diagram we determine the optimum of 1-center. Finally
after limiting the solution space to regions which Pareto set lies on, we specifically
present Pareto solutions. Convexity of Pareto front is proven in Theorem 2.

2 One dimensional

Let P = {x1, x2, . . . xn} be a set of input points in one dimension, the goal is
to minimize M(x) =

∑n
i=1 |x− xi| and C(x) = max1≤i≤n |x− xi|. According

to the properties of the absolute value function and some simple calculations,
it is easy to see that M(x) is a continuous piecewise linear function which its
minimum depends on n. The minimum can either be one point or an interval
which we denote by Mopt in the rest of the paper. Also without loss of generality
we assume that input points are sorted increasingly. In one dimensional space,
Mopt = [mi,mj ] ⊂ R for 1 ≤ i, j ≤ n such that mi = xi, mj = xj . For odd
n we have j = i and for even n, j = i + 1. Moreover, the function is strictly
decreasing before its minimum and is strictly increasing after it (Figure 1). For
C(x) suppose copt ∈ R denote the point which C(copt) is minimum. Obviously
copt = (x1+xn)/2. Similarly to M(x), C(x) is strictly decreasing before optimal
point and strictly increasing after that.

Lemma 1. Pareto optimal set in one dimensional 1-median 1-center two-objective
optimization problem is the smallest interval consisting of a solution with 1-
center optimal and a solution with 1-median optimal.

Proof. Suppose that n is even (the proof is similar for odd n). As shown in
Figure 2, there are three different cases:
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(a) copt and Mopt have intersection. (b) copt is on the right side of Mopt.

(c) copt is on the left side of Mopt.

Fig. 2: Pareto set computation in one dimension.

First consider the case that copt and Mopt have an intersection (Figure 2a). In
this case the intersection point is the only member of Pareto optimal solutions.
Because not only it is optimal in both objectives, but also it is the only point
where C(x) is optimal. So it dominates all the other solutions and no solution
dominates it.

As shown in Figure 2b there are three regions in the second case. In region
C both functions are strictly increasing. Therefore, copt has the best value in
both objectives. It dominates all solutions of this region. In A, C(x) is strictly
decreasing, thus C(mj) is strictly smaller than 1-center objective of all the other
solutions. Moreover, M(mj) is smaller than or equal with 1-median objective
of the other solutions. Hence mj dominates all solutions of A. Finally we claim
that B is Pareto set. By contradiction, suppose it is not true, then there must be
a point p which dominates q ∈ B. It has to be on the left side or right side of q.
Let p be on the right side, we know that M(x) is strictly increasing in this side.
hence M(q) < M(p) and it contradicts with dominance of p. Similarly there is a
contradiction if p lies on the left side of q, because C(x) is strictly decreasing in
this side, ie. C(q) < C(p). This implies that all the solutions that lie on B are
Pareto set.

The proof is similar for the third case which copt is on the left side of Mopt

(Figure 2c). ⊓⊔

Lemma 2. Pareto optimal front of one dimensional 1-median 1-center two-
objective optimization problem forms a continuous, convex and piecewise linear
function.

Proof. If there is an intersection between copt and Mopt the lemma is held. Now
suppose there is no such intersection and consider copt is on the right side of Mopt

(resp. on the left side of Mopt). From lemma 1 for Pareto solutions we have Ps =
[mj , copt] (resp. Ps = [copt,mi]). Since C(x) derivation is constant and M(x) is
piecewise linear in Ps, the diagram of M(x)-C(x) is piecewise linear and break
points are

(
C(xi),M(xi)

)
such that mj ≤ xi ≤ copt (resp. copt ≤ xi ≤ mi). The

absolute value of slope of M(x) increases on each linear piece in Ps. Thus Pareto
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optimal front is convex (Figure 3). Also we can conclude that piecewise linear
Pareto front is one-to-one and invertible corresponding to Pareto solutions. ⊓⊔

Lemma 3. Computing Pareto front of one dimensional 1-median 1-center two-
objective optimization problem requires Ω(n logn) time.

Proof. The proof is based on reduction from sorting problem. By contradiction
assume there is an algorithm which return set O =

{(
C(α1),M(α1)

)
· · · ,(

C(αm),M(αm)
)}

–lexicographical ordered break points of the piecewise lin-
ear Pareto front function– besides the Pareto solutions interval in o(n log n)
running time. Let A = {a1, . . . , an} is the set of input values of sorting prob-
lem, l = argmin1≤i≤n ai and h = argmax1≤i≤n ai. Suppose b1, . . . , bn+1 and
t are values such that b1 < · · · < bn+1 < al and t = 2 · ah − b1 + 1, then
B = A∪{b1, · · · , bn+1, t} is defined in O(n). For the set B as input points of one
dimensional 1-median 1-center two-objective optimization, 1-median optimal in-
terval is [bn+1, al] and 1-center optimal point is between ah and t. Using lemma

2 we conclude that m = n + 1 and α1 = al < · · · < αm−1 = ah < αm = (b1+t)
2 .

Therefore, we can sort input points by given algorithm which implies that no
algorithms with o(n log n) running time can compute Pareto front of one dimen-
sional 1-median 1-center two-objective optimization problem. ⊓⊔

Note 1. If the algorithm output the Pareto optimal front asO =
{(

C(α1),M(α1)
)
−(

C(α2),M(α2)
)
, · · · ,

(
C(α2m−1),M(α2m−1)

)
−
(
C(α2m),M(α2m)

)}
, start points

and end points of m segments, since the slope of each segment is an integer of
O(n), the segments can be sorted in O(n). Therefore, we can have sorted break
points of Pareto front function and the above proof holds.

Theorem 1. Algorithm 1 compute one dimensional 1-median 1-center two-objective
Pareto front and Pareto solutions interval in O(n · log n).

. . .

C(mj)C(copt)

C(x)

M(x)

Fig. 3: One dimensional 1-median 1-center two-objective Pareto optimal front.
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Proof. C(x) can be computed easily in constant time andM(x) can be computed
in O(log n) using binary search, we obtain that line 13 is O(log n) running time.
Therefore, we can conclude that Algorithm 1 is O(n · log n). ⊓⊔

Corollary 1. Pareto front of one dimensional 1-median 1-center two-objective
optimization problem can be computed in θ(n log n).

Algorithm 1 Compute Pareto Optimal Front

Input: Set I s.t. |I| = n
Output: Ps(Pareto solutions), Pf (Pareto front)
1: Sort I increasingly to {x1, x2, . . . , xn}
2: if n is even then
3: b = n

2
+ 1

4: else
5: b = n+1

2

6: end if
7: Ps = [xb, (x1 + xn)/2]
8: Pf = Φ
9: Add

(
C(xb),M(xb)

)
to Pf

10: i = b
11: while xi+1 < (x1 + xn)/2 do
12: i = i+ 1
13: Add

(
C(xi),M(xi)

)
to Pf

14: end while
15: Add

(
C(x(x1+xn)/2),M(x(x1+xn)/2)

)
to Pf

16: return Ps, Pf

Due to space limitation, Algorithm 1 is just for the case that copt is on the
right side of Mopt. The case that copt is on the left side is similar. If there is an
intersection, solution is obviously the intersection point.

3 Two dimensional

In this section we consider the problem in R2. The aim is to find the Pareto
front and Pareto solutions in terms of Mopt and Copt.

3.1 1-Median objective

For each point p ∈ R2 we have:

M(u) =
n∑

i=1

∥u− pi∥1

=

n∑
i=1

|ux − pix|+
n∑

i=1

|uy − piy| (1)
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−2x + 2y + cn
2

, n
2

+2 2y + cn
2

+1, n
2

+2 2x + 2y + cn
2

+2, n
2

+2

−2x + cn
2

, n
2

+1
cn

2
+1, n

2
+1 2x + cn

2
+2, n

2
+1

−2x − 2y + cn
2

, n
2

−2y + cn
2

+1, n
2

2x − 2y + cn
2

+2, n
2

(a) Number of equations is even, 1-median optimal is a rectangular (blue) region.

−x − y + cn+1
2

,
n+1
2

x − y + cn+3
2

,
n+1
2

−x + y + cn+1
2

,
n+3
2

x + y + cn+1
2

+1,
n+3
2

(b) Number of equations is odd, 1-median is a (blue) point.

Fig. 4: 1-median optimal and equation of M(p) in middle cells.

We can observe that we need O(n) time to deterministically minimize equation
1. Moreover, because of the assumption that no points have same coordinate the
optimal of Mopt may be just a point or area of a rectangle.

In the rest of this paper we assume that n is even (all proofs and discussions
are similar when n is odd.). Consider lines y = pix and x = piy such that
1 ≤ i ≤ n which partition the xy-plane into (n + 1)2 cells where boundary
cells are unbounded. The equation of M(p) for points in each cell is the same
because of the absolute value function. Furthermore, for points in a column
(resp. row) equation of

∑n
i=1 |x− pix | (resp.

∑n
i=1 |y − piy |) do not change but

for transformation to upper (resp. right) cell coefficient of y (resp. x) increases
by 2 (Figure 4).

3.2 1-Center objective

Let FVD be the farthest point Voronoi diagram of input points in Manhattan
metric, also let RFVD(p) denote the region of FVD which consist of p and
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A

B

C

D

(a) Farthest point Voronoi diagram re-
gions in Manhattan metric.

a

b

A

B

C

D

E

(b) Possible region for site of C is A\E .

Fig. 5: Farthest point Voronoi diagram properties.

SFVD(R) denote the site of region R. According to the definition of 1-center
objective, C(p) is ∥p−SFVD(RFVD(p))∥1. Besides the FVD partition the plane
into at least two and at most four regions (Figure 5a).

According to the structure of FVD, it is impossible for regions A and C to
have a common site. However, either B (resp. D) can merge with A (resp. C)
or B (resp. D) can merge with C (resp. A), ie. B and D cannot merge with a
common region simultaneously.

Proposition 1. Site of region C is in A\E. Otherwise distances between points
on segment ab and SFVD(C) are not equal and ab is not an edge of FVD. (Figure
5b)

From proposition 1 it can be concluded that C(p) for p ∈ C is equal to distance
of p from segment ab add up to distance between segment ab and SFVD(C).
Proposition 2. As shown in Figure 6a distances of m1,m2 ∈ A from line ℓ1
is equal to their distances from segment ab. For point m1 both distances are
obviously the same and are equal to ∥m1 −m′

1∥1. For point m2 we have ∆pqm′
2

and ∆qm′
2a as equal isosceles triangles. Therefore, segments qm′

2 and qa are
equal. Hence ∥m2 −m′

2∥1 = ∥m2 − a∥1.
The following two propositions determine the equation of C(p) in the plane and
proof that it depends on which region of FVD includes p.

Proposition 3. For point p ∈ C (resp. p ∈ A), C(p) = kopt + c− px − py (resp.
C(p) = kopt − c+ px + py) where c is y-intercept of ℓ1 (Figure 6b).

Proof. Suppose equation of line ℓ1 is y = −x + c and distance between site
of C and segment ab is kopt, then projection of point p = (x, y) on ℓ1 is p′ =
( c−y+x

2 , c+y−x
2 ). Using proposition 1 and proposition 2 can obtain that:

C(p) = kopt + ∥p− p′∥1 = kopt + c− px − py
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⊓⊔

Proposition 4. In figure 7a since site of D is in hatched region or on its border,
for point q ∈ D we have C(q) as the distance of point a from SFVD(D) add up
to distance between point a and point q. Also since point a is an FVD vertex,
we know that distance of point a from SFVD(D) is equal to its distance from
SFVD(C) and as equal to kopt, hence:

C(q) = kopt + ∥a− q∥1 = kopt + c− qx + qy

Similarly it can be proven that for q ∈ B:

C(q) = kopt + ∥b− q∥1 = kopt + c+ qx − qy

Corollary 2. According to propositions 3 and 4 we can conclude that points in
A and C which are on segments parallel to segment ab have the same 1-center
objective value. Also for B and D these points are on segments perpendicular to
ab. Moreover, points on ab are optimal of 1-center objective (Figure 7b).

3.3 Pareto Optimal Solutions

Suppose Mopt and Copt are calculated. Obviously if they have intersection, it is
the set of Pareto solutions. Hence in the rest of this section we assume that Mopt

and Copt have no intersection.

Possible Region for Pareto Optimal Set Here the goal is to find the region
P such that its boundary points dominate all points of the plane, ie. Pareto set
is definitely in P.

a

b

m′
2

m′
1

q

p

X

Y

m1

m2

`1

(a) Property of 1-center optimal seg-
ment in Manhattan metric.

p

p′

a

b

A

B

C

D

`1

(b) Projection of points to line ℓ1.

Fig. 6: Compute C(p) using FVD
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a

b

A
D

B

C

(a) Possible region for site of D.

a

b

A

B

C

D

(b) Points with the same 1-center
value.

Fig. 7: Computing 1-center optimal using FVD.

According to the optimal of M(p) and C(p), three cases are possible. In the
first case Mopt is in regions A or C, in the second case Mopt is in regions B or
D and in the third case Mopt intersects with the axis aligned the edges of FVD.
For the first case (Figure 8a) let e be the lower left point of Mopt and let ef
and ed be the vertical and horizontal segments hitting the edges of FVD. For
all points u on line of ed and w on half-line segment ℓ1 perpendicular to ℓed,
C(u) < C(w) and M(u) ≤ M(w). Thus u dominates all points on ℓ1. Similarly
for point q on ℓef and w on half-line segment ℓ2, q ≺ w. There are similar results
for other edges of adefb which make us able to conclude that polygon adefb is
P.

Second and third cases are similar and we consider them simultaneously
(Figure 8b and Figure 8c). Let bcde be in region B. Obviously above discussion
holds for points p, q, r, s and half-line segments ℓ1, ℓ2, ℓ3 and ℓ4 respectively.
Moreover, a dominates all points of D, any point t on ab dominates all points on
horizontal (resp. vertical) half-line segment which starts from t and pass through
C (resp. A) and b dominates all points on ab. Therefore, we can conclude that
points on the border of bcde dominate all points outside of it and bcde is P. It
is the same when bcde is in D.

Pareto Optimal Solutions We have shown that M(p) partitions the plane
to cells in which equation of M(p) is known. According to this partitioning and
Copt, seven cases are possible. First three cases happen when Mopt is in A or C
of FVD. Next three cases occur when Mopt is in B or D. Last case occurs when
Mopt and axis aligned edges of FVD have intersection.

The claim is that cells in P whose equations are M(p) = αpx + βpy + c such
that α = β, are part of Pareto set.
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a

b

e

f

d u

`1

t`6

s

`4

`5 s

`3

q `2

P

B

C

D

Mopt

A

(a) Mopt is in A.

b

d

c

e
q

`2

r`3

s

`4

p `1

A

B
C

P

Mopt

(b) Mopt is in B.

b c

q

d
e

`2

r`3
s

`4

p `1

A

B
C

P
Mopt

(c) Mopt is on the axis aligned edge of
FVD.

Fig. 8: Different cases for possible region of Pareto solutions.

Proposition 5. Let P be in A. For each cell with M(p) = αpx + βpy + c where
α/β > 1, points on the right and bottom edges dominate other points of the cell.

Proof. For each point p in the cell, points with the same 1-median values are
on a line which is parallel to y = −α/β. This line will hit the border of the cell
in points p′ and p′′ such that p′x > p′′x, ie. p

′ is on bottom or right edge. Since
α/β > 1 we have C(p′) < C(p) < C(p′′) and p′ dominates p and p′′. ⊓⊔

Proposition 6. Suppose P is in A (resp. C). In P let q be a point in a cell with
equation M(q) = αqx + αqy + c such that α < 0 (resp. α > 0). Suppose ℓ be the
line passing through q with equation y = −x + c′. By extending proposition 5,
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for all p on ℓ or bellow (resp. on ℓ or above) we have M(q) ≤ M(p). The same
result holds for B and D when ℓ is y = x+ c′.

The following lemma introduces special cells in P which are part of Pareto set.
In the rest of this paper we refer to them as Pareto cells.

Lemma 4. Suppose P is in A (resp. C). All points like p of cells with M(p) =
αpx+βpy + c such that α = β and α < 0 (resp. α > 0), are all or part of Pareto
set.

Proof. Here we assume P ⊂ A but the proof is similar when P ⊂ C. Consider
p ∈ P such that M(p) = αpx + αpy + c and α < 0. Suppose q dominates p and
ℓ be a line passing through p with y = −x + c′ equation. if q is above ℓ then
C(q) is greater than C(p). Therefore, q is on or bellow ℓ. By proposition 6, if q is
bellow ℓ it means M(p) < M(q) otherwise q is on ℓ; but if both are in the same
cell it concludes that C(p) = C(q) and M(p) = M(q), otherwise M(p) < M(q).
We can obtain from these contradictions that no point dominates p. ⊓⊔

Similar to lemma 4, cells with M(p) = αpx + βpy + c such that β = −α and
α > 0 (resp. α < 0) are Pareto cells in region B (resp. D).

For intersection of a Pareto cell with edges of FVD several cases are possible.
If the Pareto cell intersects with a horizontal (resp. vertical) edge, segment from
b (resp. a) to border of the Pareto cell will be the rest of Pareto solutions, we
refer to this segment as Pareto segment. Suppose point q dominates p ∈ Pareto
segment and let ℓ be the line passing through p and parallel to y = −x, then q
must be on or below this line, otherwise C(q) > C(p). But if q is on or below ℓ,
since p is in a cell that α/β > 1, M(p) < M(q). If Pareto cell intersects with ab,
the part of cell which is in P is also Pareto cell (Figure 9).

B

C

D
A

B

C

D
Mopt

Mopt

Mopt

Fig. 9: Intersection of Pareto cells with edges of FVD
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Lemma 5. Points of a Pareto cell in solution space are a segment in objective
space.

Proof. In a Pareto cell M(p) = αpx + αpy + c (α < 0) and C(p) = px + py + c′.
Therefore, M(p)−αC(p) = c′′. This implies that Pareto cell in solution space is
a segment with Y − αX = c′′ equation in objective space. It is easy to see that
this holds for Pareto segments. ⊓⊔

Theorem 2. Pareto Front of two dimensional 1-median 1-center two-objective
optimization problem is continuous, convex and piecewise linear function.

Proof. By lemma 5 we can conclude that Pareto optimal front is piecewise linear.
Since in the sequence of Pareto cells from Mopt to Copt each cell have a common
point with the next cell, the sequence of segments of Pareto front is continuous.
Moreover, since in each cell the coordinate of x and y in M(p) is smaller than
the previous ones, slope of segment of that cell in objective space will be bigger
than segments of previous cells which guarantees convexity of Pareto front. ⊓⊔

Corollary 3. Finding Pareto front and Pareto Solution set of two dimensional
1-median 1-center two-objective optimization problem is θ(n log n).

4 Conclusion and Future Work

In this paper we introduced an important and useful multi-objective optimization
problem with 1-median and 1-center in Manhattan metric as its objectives. We
considered the problem in one and two dimensional space. We also determined
the Pareto optimal front and Pareto set simultaneously. Furthermore we proved
finding Pareto front and Pareto solution set of proposed problem is θ(n log n).

In higher dimensions, considering Manhattan metric, similar to two dimen-
sional space we can show that optimal of 1-median, ie. M(x), will be a d dimen-
sional hypercube. Also, it can be computed in O(dn). For optimal of 1-center,
ie. C(x), the propositions are not straight forward. However finding the small-
est circumferential hypercube drives us to the hyperplane which is the locus
of cube’s center (optimal of 1-center). Moreover, it seems that farthest point
Voronoi diagram has the most 2d regions. Thus we guess the Pareto optimal set
is very similar to two dimensional space; ie. smallest interval of hypercubes from
M(x) to C(x) which are connected by their corners in direction perpendicular
to locus of optimal of C(x).

In Euclidean metric, we think this problem will be much harder and the
Pareto solutions cannot be computed exactly. In this case we have to approximate
Pareto solutions and Pareto front. Moreover, this approximation can be followed
for harder objectives such as 2-median and 2-center.
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